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Abstract

The effect of the phase lag of temperature gradient, sT , on the transmission–reflection phenomenon, induced by a
pulsed thermal energy passing the interface of a two-layered structure, within the framework of dual-phase-lag based

heat conduction equation is studied numerically by the lattice Boltzmann (LB) method. An extended LB equation, with

truncation error of order two, and a numerical solution procedure are developed for the solution of the governing

equation and the derived interfacial boundary condition. Results show that the interface reflects a negative followed by

a positive waveform when the pulsed thermal wave propagates from the media with lower sT into the media with higher
sT and vice versa if the wave propagates from higher into lower sT media. These special phenomena which have not
been presented in the available literatures are unable to be predicted in the framework of hyperbolic heat conduction

equation.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Although Fourier�s law is appropriate in describing heat conduction in most common engineering situations,
however, it breaks down in situations involving very short times, high heat fluxes, and at very low temperatures [1]. The

anomaly of this classical theory is from the assumption that the heat flux vector and the temperature gradient across a

material volume occur at the same instant of time. Such an immediate response results in an infinite speed of heat

propagation. In order to associate a finite heat propagation speed, Cattaneo [2] and Vernotte [3] modified Fourier�s law
by including a relaxation model that, in parallel to Fourier�s law, can be written as [4]

qðn; g þ ~ssqÞ ¼ �krhðn; gÞ: ð1Þ

This equation shows that the temperature gradient rh established at a position n at time g results in a heat flux to flow
at the same position but at a different instant of time g þ ~ssq. Physically, ~ssq represents the relaxation time or the phase-lag
time between the temperature gradient and the commencement of heat flow in a medium. This modified Fourier�s law
incorporating with the conservation of energy leads to the wave-based hyperbolic heat conduction equation (HHCE).

For some initial or boundary conditions, the HHCE will introduce a sharp wavefront in the history of wave propa-

gation, resulting in several physical phenomena which cannot be depicted by diffusion. Comprehensive literature

surveys of heat waves until the eighties can be found in the review articles by Joseph and Preziosi [5,6] and more recently

by Ozisik and Tzou [7].
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Nomenclature

A coefficient ð¼ 1=ðbþ 1ÞÞ
B dimensionless parameter (¼ sT=wsq)
b number of propagation direction in a lattice

Cp dimensionless specific heat at constant pressure

cp specific heat at constant pressure

ei propagation velocity in direction i in a lattice

e propagation speed (¼ Dx=Dt)
fi particle distribution function in the ei direction

f ð0Þ
i equilibrium particle distribution function in the ei direction

G dimensionless heat source per unit volume

g heat source per unit volume

K dimensionless thermal conductivity

k thermal conductivity

L dimensionless length of slab

l dimensionless spatial range where the pulsed energy imposed

O order of magnitude

q heat flux

q scalar of heat flux

R dimensionless density

RE truncation error

T dimensionless temperature

t dimensionless time

V speed of thermal wave

x dimensionless space variable

Greek symbols

a thermal diffusivity

C dimensionless thermal diffusivity

c parameter (¼ C=2ðs � Dt=2Þ)
d width of the volumetric heat source

dðtÞ Dirac delta function

e small quantity for Chapman–Enskog expansion

g time

h temperature

k parameter(¼ C=ðs � Dt=2Þ)
n space variable

q density

s relaxation time in BGK model

sq dimensionless phase lag of the heat flow

sT dimensionless phase lag of the temperature gradient

~ssq phase lag of the heat flow

~ssT phase lag of the temperature gradient

W source term in lattice Boltzmann equation

Dx dimensionless lattice size

Dt dimensionless time step

Superscripts

(1) OðeÞ in the Chapman–Enskog expansion
(2) Oðe2Þ in the Chapman–Enskog expansion

Subscripts

I Layer 1

II Layer 2
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Although the HHCE can solve the paradox of instantaneous response of thermal disturbance, it also introduces

some unusual behaviors [8] and physically impossible solutions [9,10]. Instead of the precedence assumption in Eq. (1),

assuming the lead of the temperature gradient to the heat flux, a more general model, the dual-phase-lag (DPL) model,

was proposed by Tzou [4,11,12]. This model allows either the temperature gradient to precede the heat flux or the heat

flux to precede the temperature gradient. Mathematically, the constitutive law for DPL is represented by

qðn; g þ ~ssqÞ ¼ �krhðn; g þ ~ssT Þ; ð2Þ

where ~ssT is the phase lag of the temperature gradient. Ever since its agreement with experimental results was shown [13],
the DPL model has attracted a considerable interest in the fundamental transport process of heat and mass including,

for example, thermal stresses of thin plate [14], lagging behavior of heat transport in amorphous materials [15], semi-

infinite slab with surface heat flux [16], nonequilibrium entropy production [17,18], thermalization and relaxation

during short-time transient in microscale [19,20], temperature-dependent thermal lagging under ultrafast laser heating

[21], and, more recently, the growth of interfacial phase compound in metal matrix composites as well as in thin films

[22–24].

In this exposition, we shall study the propagation of an ultrashort pulsed energy across the solid-solid interface of

dissimilar material layers. With the advent of modern laser with ultrashort pulse duration, picosecond or femtosecond,

the ultrafast heat transport process has become an important problem with practical importance [25]. Many interesting

phenomena and unusual results regarding energy transport at interface of dissimilar materials have been explored

[7,26–29]. Most of them, however, were within the framework of HHCE, that is, attentions were mainly on the effect of

~ssq. No researches, to authors� best knowledge, had focused on the effect of ~ssT on the energy disposition at layer in-
terface. Mathematically, the DPL model introduces additional high-order, mixed spatial and time derivative terms in

the governing equation as well as in boundary condition at the layer interface. In additional to the mathematical

difficulties, the propagation of pulsed energy for multilayered regions may provide additional insight and understanding

into the special phenomena of heat propagation in the framework of the DPL model.

In the present study, both the heat transfer and the transmission–reflection phenomenon at interface induced by an

instantaneous energy pulse incident on the surface of a two-layered structure are studied. The dimensionless governing

equation and the interfacial condition based on the continuities of temperature and heat flux in the framework of DPL

model are first derived and discussed. Subsequently, an extended, discretized lattice Boltzmann (LB) method, repre-

sented by the BGK (Bhatnagar–Gross–Krook) approximation [37] with a source term, is proposed for the governing

equation. The technique of Chapman–Enskog multiscale expansion is employed to demonstrate that the proposed

extended LB equation macroscopically matches the governing equation with truncation error of order two. A numerical

solution procedure to link the governing equation and the initial, interfacial as well as boundary conditions is devel-

oped. Part of the transmission–reflection-combination phenomenon based on the HHCE presented in the literature [1]

is retrieved to verify the validity of the present numerical scheme. Finally, effects of ~ssT on the transmission–reflection
phenomena at layer interface are presented. The special phenomena obtained within the DPL-based heat conduction

equation are discussed.

2. Physical model and mathematical formulation

Shown in Fig. 1, a one-dimensional, two-layered structure without contact resistance is considered. It is further

assumed that these two layers are of the same thickness but with different material properties. At time g ¼ 0, an energy
pulse incidents on the surface of the two-layered structure and is absorbed within a penetration depth d in Layer I. This
system is highly promising in laser processing of thin-film materials [30–32]. Instantaneously after the energy pulsed,

g ¼ 0þ, the absorbed energy within d is released and propagates into the mulitlayered structure, the positive n direction.
Eq. (2) couples with equation of energy conservation leading to the heat conduction equation based on the DPL

model as

~ssq
o2h
og2

þ oh
og

¼ a
o2h

on2
þ a~ssT

o3T

on2 og
þ ~ssq

qcp

og
og

þ g
qcp

: ð3Þ

i direction i in a lattice

j lattice index

r reference state for dimensionless parameter
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Eq. (3) reduces to the HHCE if ~ssT ¼ 0, and it becomes the classical heat diffusion equation when ~ssT ¼ ~ssq ¼ 0. With
introducing the following dimensionless variables

R ¼ q=qr; Cp ¼ cp=cpr; K ¼ k=kr; C ¼ a=ar; sq ¼ ~ssq=~ssqr ; sT ¼ ~ssT =~ssqr ;

V ¼
ffiffiffiffiffiffiffiffiffiffi
C=sq

q
; t ¼ g=2~ssqr ; x ¼ n=2

ffiffiffiffiffiffiffiffiffi
ar~ssqr

p
; T ¼ h=hr; G ¼ 4~ssqrg

qcphr
;

ð4Þ

the dimensionless form of Eq. (3) is given by

o2T
ot2

þ 2
sq

oT
ot

¼ V 2
o2T
ox2

þ CB
o3T
ox2 ot

þ 1
2

oG
ot

þ G
sq
; ð5Þ

where B is a dimensionless parameter that characterizes the lagging response and is defined as the ratio between the two

phase lags, B ¼ sT=2sq.
In this study, it is assumed that both initial temperature and initial rate of temperature change in the entire com-

putational domain are uniform, that is,

T ðx; 0Þ ¼ 0; oT ðx; 0Þ
ot

¼ 0 for all x: ð6Þ

We consider the situation that two sides of the structure are insulated. The expression for adiabatic boundary condition

within the framework of DPL model can be derived through the constitutive equation, Eq. (2). The general solution of

heat flux was given by [17]

qðx; tÞ ¼ qðx; 0Þe�t=sq þ k
sT
sq
e�t=sqrT ðx; 0Þ � k

sT
sq

rT ðx; tÞ � k
sq

1

�
� sT

sq

�Z t

0

e�ðt�tÞ=sqrT ðx; tÞdt: ð7Þ

Physically, the adiabatic conditions means no heat flux is able to pass through the boundaries, that is, q ¼ 0 at both
x ¼ 0 and L for all t. Initially, neither temperature gradient nor heat flux is in the slab, rT and q are equal to zero at
t ¼ 0. Thus, the first two terms on the right hand side of Eq. (7) are vanishing. To satisfy q ¼ 0 for all t at two
boundaries, we have rT ¼ 0, i.e.,

oT ð0; tÞ
ox

¼ oT ðL; tÞ
ox

¼ 0: ð8Þ

At the interface of the two layers, x ¼ L=2, two continuous conditions to implement are the continuities of tem-
perature and heat flux. They are expressed as

TI ¼ TII and qI ¼ qII at x ¼ L=2 for all t: ð9Þ

These interfacial conditions simply imply there is neither thermal resistance nor thermal inertia at the interface. Using

Taylor�s series expansion to the first order of Eq. (2), the interfacial condition qI ¼ qII can be expressed in terms of

temperature as

�KI sqII
o2TI
oxot

��
þ oTI

ox

�
þ sTI

o

ot
sqII

o2TI
oxot

�
þ oTI

ox

��
¼ �KII sqI

o2TII
oxot

��
þ oTII

ox

�
þ sTII

o

ot
sqI

o2TII
oxot

�
þ oTII

ox

��
: ð10Þ

Fig. 1. Schematic diagram of the physical system showing the two-layered structure, coordinate, boundary condition and the depth of

the pulsed volumetric heat source.
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As the DPL model covers both hyperbolic and parabolic heat conduction equations, Eq. (10) represents the general

form of continuity of heat flux at the interface of two adjacent regions with ideal thermal contact. When sTI ¼ sTII , Eq.
(10) reduces to

KI sqII
o2TI
oxot

�
þ oTI

ox

�
¼ KII sqI

o2TII
oxot

�
þ oTII

ox

�
: ð11Þ

This is the interfacial condition for HHCE [1]. Eq. (11) can further reduce to the interfacial condition for parabolic heat

conduction equation, KIoTI=ox ¼ KIIoTII=ox, when sqI ¼ sqII .

3. Numerical method

To solve the propagation of pulsed energy in a two-layered structure in the framework of the DPL model, the field

equation, Eq. (5), should be solved together with initial, boundary and interfacial equations described respectively by

Eqs. (6), (8) and (10). The LB method is adopted in this study for its ability to handle complex boundary condition and

capability to avoid numerical instability. Recently this method has been considered as a powerful tool for the solution

of partial differential equation and simulation of complicated physical problems [33–40]. The use of LB method for the

parabolic heat conduction equation was first proposed by Wolf-Gladrow [39] and we presented the LB method for

Stefan problem in the framework of parabolic heat conduction equation [40].

3.1. The extended lattice Boltzmann equation

The starting point of the LB method is the kinetic equation for the particle distribution function, fiðx; tÞ,

fiðxþ eiDt; t þ DtÞ � fiðx; tÞ ¼ �Dt
s

fiðx; tÞ
h

� f ð0Þ
i ðx; tÞ

i
; i ¼ 0; 1; . . . b; ð12Þ

where fi is the particle distribution functions denote the number of particles at lattice node x and time t, moving in
direction i with velocity ei along the lattice link Dxi ¼ eiDt connecting nearest neighbors. The first term on the right
hand side represents collisions from b directions that drive each distribution fi toward its local equilibrium distribution
f ð0Þ
i in a dimensionless time lapse of Dt=s. Once the discrete populations are known, the macroscopic physical quantity

sqoT ðx; tÞ=ot can be expressed in terms of the discrete distribution function fi as

sq
oT ðx; tÞ

ot
¼
X
i

fiðx; tÞ: ð13Þ

As the first order temperature derivative with respect to time has been obtained, the local temperature at time t þ Dt can
be obtained through the Taylor expansion up to the second order as

T ðx; t þ DtÞ ¼ T ðx; tÞ þ Dt
oT ðx; tÞ

ot
þ Dt2

2

o2T ðx; tÞ
ot2

þOðDt3Þ: ð14Þ

By analogy with the source term in Eq. (5), some source term are introduced to the LB equation and the resulting

extended LB equation is proposed as

fiðxþ eiDt; t þ DtÞ � fiðx; tÞ ¼ �Dt
s

fiðx; tÞ
h

� f ð0Þ
i ðx; tÞ

i
� 2ADt

oT
ot

þ DtW: ð15Þ

In Eq. (17), f ð0Þ
i is the equilibrium, directional particle distribution function, A is a coefficient to be determined, W is

determined from external heat source.

3.2. Chapman–Enskog expansion

The macroscopic consistence between Eqs. (5) and (15) can be demonstrated through the Chapman–Enskog ex-

pansion [37,38]. In this expansion the particle distribution functions, fi, are expanded up to the third order with respect
to the expansion parameter e as

fi ¼ f ð0Þ
i þ ef ð1Þ

i þ e2f ð2Þ
i þ e3f ð3Þ

i þOðe4Þ; ð16Þ
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where e is a small quantity, i.e. jej � 1. The summation of distribution functions satisfyX
i

fi ¼
X
i

f ð0Þ
i and

X
i

f ð1Þ
i ¼

X
i

f ð2Þ
i ¼

X
i

f ð3Þ
i ¼ 0: ð17Þ

Time and space scales involved in the changes of quantities are the large spatial scale xð1Þ the fast time scale tð1Þ and the
slow time scale tð2Þ [37,41]. These suggest the following scaling

ot 	 eotð1Þ þ e2otð2Þ þ e3otð3Þ þOðe4Þ; ð18Þ

ox 	 eoxð1Þ þOðe2Þ: ð19Þ

The heat dissipation and source terms in Eq. (15) are assumed in the scale of Oðe2Þ which can be accomplished through
oT
ot

	 e2
oT
otð2Þ

W ¼ e2w:
ð20Þ

Expanding fiðxþ eiDt; t þ DtÞ in Eq. (15) around f ð0Þ
i ðx; tÞ up to OðDt3Þ and introducing the above suggested scales,

the resulting equations to order of e, e2 and e3 are given as:

otð1Þf
ð0Þ
i þ o

xð1Þa
eiaf

ð0Þ
i ¼ � 1

s
f ð1Þ
i ; ð21Þ

otð2Þf
ð0Þ
i þ

�
� s þ Dt

2

�
otð1Þ
�

þ o
xð1Þa

eia
2
f ð0Þ
i ¼ � 1

s
f ð2Þ
i � 2A oT

otð2Þ
þ w; ð22Þ

and,

otð3Þf
ð0Þ
i þ ð�2s þ DtÞ otð1Þ

�
þ o

xð1Þa
eia

otð2Þf

ð0Þ
i þ s2

�
� sDt þ Dt2

6

�
otð1Þ
�

þ o
xð1Þa

eia
3
f ð0Þ
i

¼ � 1
s
f ð3Þ
i þ 2sA otð1Þ

�
þ o

xð1Þa
eia
 oT
otð2Þ

� s otð1Þ
�

þ o
xð1Þa

eia

w; ð23Þ

respectively. Summing Eqs. (21)–(23) over i from 0 to b leads to

sqotð1Þ
oT
ot

þ o
xð1Þa

Xb
i¼0

eiaf
ð0Þ
i ¼ 0; ð24Þ

sqotð2Þ
oT
ot

þ Dt
2

�
� s

�
sqotð1Þotð1Þ

oT
ot

"
þ 2otð1Þoxð1Þa

Xb
i¼0

eiaf
ð0Þ
i þ o

xð1Þa
o
xð1Þ
b

Xb
i¼0

eiaeibf
ð0Þ
i

#

¼ �2Aðbþ 1Þotð2ÞT þ ðbþ 1Þw; ð25Þ

and

sqotð3Þ
oT
ot

þ ðDt � 2sÞ sqotð1Þotð2Þ
oT
ot

 
þ o

xð1Þa
otð2Þ

Xb
i¼0

eiaf
ð0Þ
i

!
þ s2
�

� sDt þ Dt2

6

�
sqotð1Þotð1Þotð1Þ

oT
ot

 

þ 3otð1Þotð1Þoxð1Þa

Xb
i¼0

eiaf
ð0Þ
i þ 3otð1Þoxð1Þa

o
xð1Þ
b

Xb
i¼0

eiaeibf
ð0Þ
i þ o

xð1Þa
o
xð1Þ
b
o
xð1Þc

Xb
i¼0

eiaeibeicf
ð0Þ
i

!

¼ 2sA ðb
"

þ 1Þotð1Þotð2ÞT þ otð2Þoxð1Þa

Xb
i¼0

eiaT

#
� s ðb
"

þ 1Þotð1Þw þ o
xð1Þa

Xb
i¼0

eiaw

#
: ð26Þ

Taking ð24Þ 
 e þ ð25Þ 
 e2 þ ð26Þ 
 e3 and using the following constraints

Xb
i¼0

eiaf
ð0Þ
i ¼ 0

Xb
i¼0

eiaeibf
ð0Þ
i ¼ kT þ sT c

oT
ot

;

Xb
i¼0

eiaeibeicf
ð0Þ
i ¼ 0;

ð27Þ
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we obtain

sq
o2T
ot2

þ 2Aðbþ 1Þ oT
ot

¼ s

�
� Dt
2

�
k
o2T
ox2

þ s

�
� Dt
2

�
sT c

o3T
otox2

þ ðbþ 1ÞW þ 2sAe3ðbþ 1Þotð1Þotð2ÞT � se3ðb

þ 1Þotð1Þw � 3e3 s2
�

� sDt þ Dt2

6

�
otð1Þoxð1Þa

o
xð1Þ
b

kT
�

þ sT c
oT
ot

�
þOðDt3Þ þOðe4Þ: ð28Þ

As Dt and e are approaching to zero, Eq. (28) is consistent with Eq. (5) if A, k, c, and W are chosen as

A ¼ 1

bþ 1 ;

k ¼ sqV 2

s � Dt=2ð Þ ¼
C

s � Dt=2ð Þ ;

c ¼ C
2 s � Dt=2ð Þ ;

W ¼ 1

bþ 1 G
�

þ sq
2

oG
ot

�
;

ð29Þ

with truncation error

RE ¼ 2sAe3ðbþ 1Þotð1Þotð2ÞT � se3ðbþ 1Þotð1Þw � 3e3 s2
�

� sDt þ Dt2

6

�
otð1Þoxð1Þa

o
xð1Þ
b

kT
�

þ sT c
oT
ot

�
þOðDt3Þ

þOðe4Þ: ð30Þ

The D1Q3 lattice, schematically shown in Fig. 2, with b ¼ 2, e0 ¼ 0, e1 ¼ êii and e2 ¼ �êii is used for this one-dimen-
sional study. The equilibrium particle distribution function, f ð0Þ

i , are able to be obtained by
Pb

i¼0 f
ð0Þ
i ¼ sqoT=ot and

conditions given in Eq. (27) which yield

f ð0Þ
0 ¼ sq

oT
ot

� k
e2
T � sT c

e2
oT
ot

;

f ð0Þ
1 ¼ f ð0Þ

2 ¼ k
be2

T þ sT c
be2

oT
ot

:

ð31Þ

3.3. Implementation of initial, interfacial, and boundary conditions

The initial distribution function fiðx; 0Þ are calculated using one term in the expansion expression of Eq. (16), that is,
fiðx; 0Þ was set to be f ð0Þ

i ðx; 0Þ which, according to Eq. (31), depend on the initial temperature and initial rate of
temperature change. The adiabatic boundary condition is implemented as the particle distribution function is reflected

specularly [42]. That is, f1 ¼ f2 at x ¼ 0 and f2 ¼ f1 at x ¼ L.
For a prescribed temperature at boundary, the particle distribution function is set to be equal to the equilibrium

particle distribution function corresponding to that temperature. According to Eq. (31), in addition to the temperature,

T, the rate of change of temperature, oT=ot, is also required. The rate of temperature change is numerically imple-
mented through a rapid transient of linear temperature rise with time [43]. The rise time is made very small, of the order

of 10�100, so that the boundary closely approximates a step change in temperature.

Fig. 2. Schematic diagram showing the one-dimensional D1Q3 lattice. Three velocities, e0, e1, and e2 are used for this lattice. f0, f1, and
f2 represent particle distribution functions propagating respectively in the e0, e1, and e2 directions.
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At the interface, x ¼ L=2, both temperature and heat flux are continuous. These conditions can be accomplished
through letting TI ¼ TII ¼ T ðL=2; tÞ in Eq. (10). The rate of temperature change can be obtained by discretization Eq.
(10) using first-order finite difference scheme in both space and time as

oT ðL=2; tÞ
ot

¼ 1

KIsqII þ
KIsqII sTI

Dt þ KIsTI þ KIIsqI þ
KIIsqI sTII

Dt þ KIIsTII
�  KIsqII

��
þ KIsqIIsTI

Dt
þ KIsTI

�
oT ðL=2� Dx; tÞ

ot

þ KIIsqI

�
þ KIIsqIsTII

Dt
þ KIIsTII

�
oT ðL=2þ Dx; tÞ

ot

� �
� KIð þ KIIÞ

oT ðL=2; tÞ
ot

þ KIT ðL=2� Dx; tÞ

þ KIIT ðL=2þ Dx; tÞ þ KIsqIIsTI
Dt

�
þ KIIsqIsTII

Dt

�
oT ðL=2; t � DtÞ

ot

� KIsqIIsTI
Dt

oT ðL=2� Dx; t � DtÞ
ot

� KIIsqIsTII
Dt

oT ðL=2þ Dx; t � DtÞ
ot

�
: ð32Þ

The interface temperature at new time step is calculated by Eq. (14) as

T ðL=2; t þ DtÞ ¼ T ðL=2; tÞ þ Dt
oT ðL=2; tÞ

ot
þ Dt
2

oT ðL=2; tÞ
ot

�
� oT ðL=2; t � DtÞ

ot

�
: ð33Þ

The interface temperature and boundary conditions at x ¼ 0 and x ¼ L provide sufficient boundary conditions to
calculate temperature distribution in Layers I and II.

3.4. Solution procedures

Numerical solutions are executed as the following procedures:

1. At time t, the directional particle distribution functions, fiðx; tÞ, for each lattice are given.
2. The rate of temperature change and temperature are calculated respectively by Eqs. (13) and (14).

3. The equilibrium particle distribution function f ð0Þ
i ðx; tÞ are calculated according to Eq. (31).

4. The interfacial boundary condition for new time step is calculated.

5. The collision steps are executed to obtained the post-collision populations as

fiðx; t þ DtÞ ¼ fiðx; tÞ �
Dt
s

fiðx; tÞ
h

� f ð0Þ
i ðx; tÞ

i
� 2ADt

oT ðx; tÞ
ot

þ DtW:

6. The lattice populations are then shifted in the streaming step by

fiðxþ eiDt; t þ DtÞ ¼ fiðx; t þ DtÞ:

3.5. Verification of numerical scheme and computer code

Before presenting the transmission–reflection phenomena in the two-layered structure within the DPL framework,

the validity of the proposed numerical method is tested. In the first tested example, the temperature distribution in a

semi-infinite slab at a particular time for three different values of phase lag ratio, B, is examined. The dimensionless

boundary temperature at x ¼ 0 of the slab was raised from 0 to 1 at t ¼ 0þ. This example has been solved analytically by
Tzou [4]. As shown in Fig. 3, the agreement between the analytical solutions and the present numerical results is very

good.

In the second tested example, a pulsed volumetric heat source of width l emanating from Layer I adjacent to the

exterior surface at x ¼ 0 is considered. This dimensionless heat source is mathematically represented as

Gðx; tÞ ¼
dðtÞ
l

; 06 x6 l

0; x > l

(
: ð34Þ

This example was studied by Frankel et al. [1] within the framework of HHCE, which be retrieved from the current

numerical scheme simply by letting sTI ¼ sTII ¼ 0. At t ¼ 0þ, a dimensionless heat source of strength of 20 was imposed
within x ¼ 0 to l, l ¼ 0:05. Effects of thermal conductivity, diffusivity, and relaxation time sq on the reflection–trans-
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mission phenomena described in the literature [1] were tested. All the wave behaviors described in the literature were

able to be retrieved from the present numerical scheme. Fig. 4 presents one of the test result.

Fig. 3. Diagram showing comparison of the temperature distribution between analytical solution and the present numerical solution

for three values of lag ratio, B.

Fig. 4. Retrieving computational results presented in the literature [1] by the current numerical scheme for verification of numerical

scheme. Effect of sqII on temperature distribution at two particular times t ¼ 0:1 and 0.7 are shown. The dot line ones indicate the
influence of sT was taken into consideration.
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4. Results and discussion

Effects of the material properties K, C, and sq on the reflection–transmission phenomena at interface have been
discussed comprehensively by Frankel et al. [1] in the framework of HHCE. This study, therefore, mainly focuses on the

effect of sT on the fundamental nature of heat transfer at layer interface within the DPL framework. Mathematically,
the energy absorption within the penetration layer is described by Eq. (34).

In Fig. 4, results presented by the dot lines were calculated using the same material properties as their corresponding

lines but with a finite value of sT that was set as sTI ¼ sTII ¼ 1. It was demonstrated by Eq. (11) that the interfacial
boundary condition based on the DPL model is reduced to that for the HHCE when sTI ¼ sTII . Thus, no extra re-
flection–transmission phenomena are induced when the pulsed thermal energy passing through the interface. From Eq.

(5) the contribution of sT is from the term of the mixed spatial and time derivative, CBo3T=ðotox2Þ. This term can be
interpreted as diffusing the dissipation effect out with the effective coefficient of ‘‘diffusivity’’ CB that results in blunting
the sharp waveforms and broadening wave range. It is noted, from this figure, that a reflected negative temperature is

also possible within the DPL framework.

To discuss the effect of sT on the reflection–transmission phenomena resulting from the interface, all material

properties for the two layers were chosen to be the same except the sT , i.e. sTI 6¼ sTII . Fig. 5 shows the distribution of
temperature at two particular times t ¼ 0:1 and 0.7 for both sTII ¼ 0:001 (dash line) and sTII ¼ 0:02 (solid line) as sTI was
kept at 0.001. At t ¼ 0:1, both the solid and dash lines were coincided with each other, because the temperature wave
was still in Layer I and the effect of sTII from Layer II didn�t play a significant role in upstream temperature distribution
yet. Since V was chosen to be unitary, the ‘‘apparent’’ thermal wave arrived the interface around t ¼ 0:45. After this
time, the effect of thermal wave on Layer II was observed. For sTII ¼ sTI ¼ 0:001, the thermal wave transmits the in-
terface without any reflection. Compared with the waveform at t ¼ 0:1, the magnitude of the transmitted wave at
t ¼ 0:7 was reduced and waveform is further blunted and spread due to the dissipation mechanism. For sTII ¼ 0:02,

Fig. 5. Temperature distributions for sTII ¼ 0:001 and 0.02 at t ¼ 0:1 and 0.7. All other material properties for the two layers were
assumed to be unitary and sTI was set to be 0.001.
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Fig. 6. Diagram showing temperature gradients, rTI and rTII, as a function of time.

Fig. 7. Temperature distributions at five times t ¼ 0:40, 0.46, 0.51, 0.56, and, 0.64. These times were within the period the pulsed
thermal wave reached, passed, and left the interface. Material properties are described in Fig. 6.
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when the wavefront reached the interface, it was split into two waves traveling in opposing directions. The transmitted

wave, traveling to the right, retained the initial wavelike features. Compared with the waveform of the transmitted wave

for sTII ¼ 0:001, the waveform for sTII ¼ 0:02 is smaller in magnitude and more spread in space. The reflected wave,
traveling to the left, showed unusual features, however. The layer interface first reflected back a relatively negative

wavefront then followed by a positive one, as labeled by lowercase letters a,b,c,d, and e at t ¼ 0:7.
To discuss these special features resulted from the DPL heat conduction equation, the interfacial boundary con-

dition is examined. With the chosen material properties of KI ¼ KII ¼ K and sqI ¼ sqII , Eq. (10) is reduced to

�K
oTI
ox

� KsTI
o2TI
oxot

¼ �K
oTII
ox

� KsTII
o2TII
oxot

: ð35Þ

Expanding temperature gradients on both sides with respect to sTI andsTII , Eq. (35) can be approximated

�KrTI tð þ sTIÞ 	 �KrTII tð þ sTIIÞ; ð36Þ

when sTI and sTII are small. This expression indicates that there is a time shift of sTII � sTI between rTI and rTII. Fig. 6
shows temperature gradients on both sides of the interface, rTI and rTII, as a function of time. The time lag between
these two temperature-gradient waves is clearly shown. In addition to the phase shift, the wave amplitude for rTII is
smaller due to the higher sT in Layer II. Roughly four stages can be specified according to five particular times at
t ¼ 0:40, 0.46, 0.51, 0.56 and 0.64. Temperature distributions in the computational region for these five times are
shown in Fig. 7. These times were within the period that the thermal wave reached, passed through, and left the

interface.

In the study of the transmission–reflection phenomena of wave resulting from layer interface within the HHCE

framework [1], when the pulsed thermal wave reached the interface a relatively negative temperature wavefront was

reflected if Layer II had a less resistance, KII > KI, that caused more energy to enter Layer II. On the opposite, a

Fig. 8. Effect of sTII on the transmission–reflection phenomena at t ¼ 0:7. sTI ¼ 0:01. Temperature distribution for three values of sTII ,
sTII ¼ 0:001 ð< sTI Þ, sTII ¼ 0:01 ð¼ sTI Þ, and sTII ¼ 0:02 ð> sTI Þ, are shown.
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relatively positive temperature wavefront was reflected if KI > KII. By analogy with this argument, Eq. (36) can be
numerically expressed in terms of an effective thermal conductivity and temperature gradients for a particular time t as

�K 0
IrTIðtÞ ¼ �K 0

IIrTIIðtÞ; ð37Þ

where K 0 is the effective thermal conductivity. During the first stage, t ¼ 0:40–0.46, since rTI < rTII < 0, or K 0
II > K 0

I, a

relatively temperature decreasing wavefront was reflected back to Layer I from the interface due to the less resistance in

Layer II. This stage was in charge to the generation of the portion from a to b of the reflected wave in Fig. 5. For the

second stage, t ¼ 0:46–0.51, rTII < rTI < 0, or K 0
II < K 0

I, an temperature increasing wavefront was reflected from the

interface because of the higher effective thermal resistance of Layer II. This stage corresponded to portion from b to c of

the reflected wave in Fig. 5. For these first two stages, the interface temperature was increased and caused negative rTII
and rTI because they were in the duration the rising part of the thermal wave crossing the interface, see Fig. 7. The last
two stages, t ¼ 0:51–0.56 and 0.56–0.64, corresponded to the declining portion of the thermal wave that resulted in
positive rTII and rTI. Being opposite to the first two stages, the last two stages first reflected an increasing followed by
an decreasing temperature wavefront from the interface, which were matching the portions c to d and d to e in Fig. 5.

In Fig. 8, the temperature distribution at t ¼ 0:7 was shown for three values of sTII , 0.001, 0.01, and 0.02 while sTI was
kept at 0.01. When sTII < sTI , the interface first reflected back a relatively positive then followed by a negative wavefront.
Thus, the reflected wave for sTII < sTI was out of phase to that for sTII > sTI . With the increasing of sTII , the dissipation
effect resulting from the mixed derivative term, CBo3T=ðox2 otÞ, in Layer II was more effective that diminished the wave
amplitude with broadening the wave range in space.

5. Conclusions

In this study, the heat transfer and the transmission–reflection phenomenon, induced by a pulsed thermal energy

passing through the layer interface of a two-layered structure, are studied numerically. Both the governing equation and

the interfacial conditions, based on the continuities of temperature and heat flux, within the framework of DPL model

are derived and discussed. An extended, discretized LB equation and a numerical solution procedure are developed to

solve the equations. The technique of Chapman–Enskog multiscale expansion shows that the proposed extended LB

equation macroscopically matches the governing equation with truncation error of order two. The test examples show

that the results obtained by the present numerical scheme agree very well with analytical or numerical solutions in the

literature.

The fundamental difference between the hyperbolic and DPL based heat conduction equations is the extra phase lag

time, sT . This time lag introduces an additional mechanism of diffusion the dissipation effect in the governing equation
as well as new mixed spatial and time derivatives for interfacial boundary condition. These mixed derivatives lead to

fundamental different transmission–reflection phenomena from the layer interface. With the passing of a pulsed thermal

wave, the interface either reflects a negative or a positive wavefront in the framework of HHCE. For the DPL based

system, the interface can reflect a negative wavefront followed by a positive one when sTII > sTI and vice versa if
sTII < sTI . This special features can be attributed to the time shift between rTI and rTII that results in sinusoidal
difference between the effective thermal conductivities on two sides of the interface.
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